Local Response Surtace Approximation
in Evolutionary Algorithms

for Optimization of Costly Functions

Rommel G. Regis, Christine A. Shoemaker, Member, IEEE

R. G. Regis is with the School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY 14853.

E-mail: rregis@orie.cornell.edu .

C. A. Shoemaker is Ripley Professor of Engineering, School of Civil and Environmental Engineering, Cornell University,

Ithaca, NY 14853. E-mail: cas12@cornell.edu .

December 3, 2002 DRAFT

Abstract

We develop an approach for the optimization of continuous costly black box functions that uses space-filling experimental
designs and local response surface approximations to reduce the number of function evaluations in an evolutionary algorithm.
Our approach is to estimate the objective function value of an offspring solution by fitting a response surface model over the
k nearest previously evaluated points, where k = (d + 1)(d 4+ 2)/2 and d is the dimension of the problem. The estimated
function values are used to screen offspring to identify the most promising ones for the costly function evaluation. To fit
response surface models, a space-filling experimental design is used to determine initial points for costly function evaluation.
We compared the performance of a (i, A)-ES with local quadratic approximation, a (p, A\)-ES with local radial basis function
(RBF) interpolation, and a conventional (u, A)-ES which has no local approximation. The experimental design used was a
symmetric Latin hypercube and the RBF interpolant has a cubic form augmented by a linear polynomial. The performance
of these algorithms were compared on the Dixon-Szegd test functions and on the 10-dimensional Rastrigin and Ackley test
functions. All comparisons involve multiple trials, ANOVA analyses, and computation of simultaneous confidence intervals to
determine if the observed differences in performance are statistically significant. The results indicate that (p, A)-ES algorithms
with local approximation were significantly better than conventional (i, A)-ES algorithms on the Dixon-Szego test functions.
However, for the more difficult 10-dimensional Rastrigin and Ackley test functions, only the RBF approach was successful
in improving the performance of a (u, A\)-ES. Moreover, the results also suggest that the RBF approach is superior to the
quadratic approximation approach on all test functions although the difference in performance is statistically significant only

for the harder 10-dimensional test functions.

Keywords

Optimization, Costly Function, Evolutionary Algorithm, Response Surface, Quadratic Regression, Radial Basis Function,

Latin Hypercube.

I. INTRODUCTION
A. Problem Definition and Motivation

Evolutionary algorithms initially focused on solving combinatorial problems or on continuous optimization
problems for which objective function evaluation is fast. However, global optimization problems also arise
for continuous functions whose evaluation is computationally expensive (e.g. minutes to hours for each
function evaluation). For such functions, an analyst is typically willing to perform only a small number of
function evaluations to solve the optimization. Conventional evolutionary algorithms often cannot find good
solutions with a limited number of iterations. Our goal in this paper is to enhance evolutionary computation
by using local response surface approximations to screen out less suitable offspring and hence to limit function
evaluations to offspring that appear most promising. Success of this approach improves one’s ability to find
good solutions for optimization problems of costly nonconvex functions since the additional time required to
compute response surface approximations is small in comparison to the time required for objective function
evaluation.

We now provide a precise statement of the problem we wish to solve. Let D C R? be a compact set and
let f: D — R be a (deterministic) continuous function. The global optimization problem is to find z* € D
such that f(z*) < f(z) Vz € D. Note that under the given conditions, f attains its global minimum value

on D. In this paper, we would like to focus on global optimization problems where f is a black box function

December 3, 2002 DRAFT

that is costly to evaluate. For simplicity, we assume that the domain D is a box in R%, i.e.
D={zeR: —c0<a;<w; <b; <00, i=1,...,d}, (1)

for some a;,b; € R. Furthermore, we also assume that the derivatives of f are too expensive to accurately
compute so that they are practically unavailable. In other words, the only thing we have about f is the ability
to evaluate it at any point on its domain. Since f is costly to evaluate, the goal is to find an approximate
global minimizer for f on D using as few function evaluations as possible.

Optimization of costly continuous black box functions has enormous potential in engineering where models
describing the system often require lengthy simulation of complex computer codes. Optimization for these
kinds of problems is important both in system design to maximize performance and in parameter estimation
(the inverse problem). One important class of especially costly functions are those that require solutions of
systems of partial differential equations, where nonlinearities and accuracy requirements necessitate small

time steps and fine meshes, resulting in large computation times for each model simulation.

B. Literature Review

There are shortcomings with most of the existing methods for solving optimization problems for costly
black box functions. Gradient-based algorithms cannot be used in many cases simply because accurate
derivatives are not available. Evolutionary algorithms and other modern heuristics like simulated annealing
typically require a very large number of function evaluations to obtain adequately good solutions for higher
dimensional problems.

An alternative to gradient-based and heuristic methods for optimizing computationally expensive functions
are methods that are based on response surface models (also known as metamodels). The most popular of
these methods is traditional response surface methodology ([1], [2], [3]) which generally involves low-order
polynomial regression. Other response surface optimization methods are those that rely on kriging models
([4], [5], [6], [7]), radial basis functions ([8], [9], [10], [11], [12], [13], [14]), and neural networks ([15], [16],
[17], [18], [19]). These procedures operate by maintaining an approximation of the underlying function to be
optimized. The approximate model is used to identify promising points for function evaluation. Note that
the global minimum in the approximate model does not always correspond to a global minimum of the actual
surface. Hence, some of these methods tend to be iterative in the sense that the approximating surface is
periodically refitted upon the addition of newly evaluated points. However, a naive implementation of these
methods, where the global minimizer of the current approximating surface is always selected for function
evaluation may converge to some point which may not even be a local minimizer of the actual function
([4], [9])- Moreover, many global response surface methods have difficulty fitting bumpy surfaces based on a
limited number of function evaluations and may focus the search on the area near the current best solution
rather than identifying a promising area for future search.

Another approach to optimizing costly black box functions is to use response surface models to speed

up evolutionary algorithms. The basic idea in this approach is to maintain an approximate model of the

December 3, 2002 DRAFT

underlying function and use it to estimate the function values of the offspring in any generation. Instead of
evaluating the costly function at each offspring in a given generation, we simply evaluate it at a subset of the
offspring solutions (i.e. the offspring solutions with the lowest estimated function value). With this approach,
the evolutionary algorithm can continue for more generations than it could with a standard implementation
given a fixed limit on the number of costly function evaluations. By doing this, we are more likely to obtain
better quality solutions for a fixed number of function evaluations than with the standard implementation
of evolutionary algorithms.

Various response surface models have been used to approximate fitness functions in evolutionary compu-
tation. For instance, Ratle ([20], [21]) and El-Beltagy et al. [22] used kriging interpolation, El-Beltagy and
Keane [23] used Gaussian processes while Jin et al. ([24], [25], [26]) used neural networks to approximate
fitness functions. Rasheed [27] approximated fitness functions in genetic algorithms by clustering the points
encountered during the optimization and by periodically forming quadratic approximations over the entire
set of evaluated points as well as over large enough clusters. A more recent paper by Rasheed et al. [2§]
compared the performance of quadratic regression, radial basis function networks, and quickprop neural
networks in speeding up genetic-algorithm-based design optimization. In that paper, the authors found that
quadratic regression was the best among the three metamodeling techniques on some engineering design
problems.

Jin et al. ([24], [25], [26], [29]) coined the term evolution control to refer to the process of using the actual
objective function from time to time when evaluating the fitness of offspring solutions. They pointed out
that evolution control is needed in order to address the problem of incorrect convergence of an evolutionary
algorithm in the presence of false minima in the approximate model. Jin et al. ([25], [26]) also introduced a
framework for evolutionary optimization with approximate fitness functions where the frequency of evolution
control is based on an estimate of the local fidelity of the approximation model. Finally, a recent survey paper
by Jin [29] outlined several approximation models and data sampling techniques for use with evolutionary

computation.

C. Proposed Method

In this paper, we propose an approach for costly black box optimization that uses space-filling experimental
designs and k-nearest neighbor local response surface approximations to improve the performance of an
evolutionary algorithm. The local approximation is used to assess the wisdom of doing an actual function
evaluation for each offspring of an evolutionary algorithm so that the number of costly function evaluations
can be reduced, thereby improving computational efficiency. By k-nearest neighbor local approximation, we
mean that the objective function value (or the fitness value) of an offspring solution will be estimated by
fitting a model using its k-nearest neighbors among the previously evaluated points. Here, k is set equal
to (d+ 1)(d + 2)/2 which is the minimum number of data points required to fit a quadratic model. The
justification for setting k to this value is that the quadratic model is one of the simplest smooth surfaces that

can capture nonlinearity. In the context of engineering design optimization using genetic algorithms, Rasheed

December 3, 2002 DRAFT

[30] used k-nearest neighbors to classify design points as feasible, infeasible-evaluable, and unevaluable. El-
Beltagy et al. [22] suggested the use of a local metamodel in the context of kriging interpolation in order to
alleviate the computational burden of fitting metamodels. To the best of our knowledge, none of the previous
work in evolutionary computation used local response surface approximations via k-nearest neighbors to
approximate objective function values of offspring solutions.

In the numerical experiments, two response surface models will be used for local approximations of the
costly function: quadratic regression and radial basis function (RBF) interpolation. The RBF interpolation
model that will be used here is based on the work done by Powell ([13], [14]) of the Cambridge Numerical
Analysis Group and is more general than a typical RBF network model since it is equivalent to an RBF
network model augmented by a low-order polynomial. Moreover, a typical RBF network uses Gaussian
RBF's whereas in this investigation, we will use a cubic RBF with a linear polynomial tail. Recent studies
suggest that the cubic and thinplate RBFs have more desirable theoretical properties than Gaussian or
multiquadric RBFs [31]. A space-filling experimental design ([32], [33]) provides an excellent set of points
where the initial function evaluations should take place in order to get information needed to fit a response
surface model. The function values at the experimental design points provide a rough global picture of the
underlying function. In this investigation, we will use a symmetric Latin hypercube design [34]. Finally, the
particular evolutionary algorithm that will be used in this investigation is a (u, A)-Evolution Strategy with
uncorrelated mutations which was originally proposed by Schwefel [35]. However, our method can be used
with most evolutionary algorithms.

In the computational experiments, the algorithms will be tested on some benchmark test functions for
global optimization such as the Dixon-Szego test functions [36], the 10-dimensional Rastrigin test function
[37], and the 10-dimensional Ackley test function [38]. In addition, we will employ standard statistical
techniques such as ANOVA with simultaneous confidence intervals to compare the performance of a (u, A)-
ES with its enhanced versions. The purpose of the statistical analysis is to provide stronger and more solid
claims regarding the relative performance of the different algorithms being tested.

This paper differs from those reviewed above in several ways. First, as pointed out earlier, this is the
first paper to implement local response surface approximation via k-nearest neighbors in the context of
evolutionary computation. Second, it is the only paper to use a radial basis function (RBF) augmented by a
polynomial and also the only paper to use a cubic RBF (instead of the Gaussian form which is more popular
in the machine learning community) with an evolutionary algorithm. Moreover, this paper is the first to use
space-filling experimental designs to select initial points for function evaluation which are needed to fit a
response surface model in the context of evolutionary computation. Finally, it is also the only paper on using
response surface approximation in evolutionary algorithms to compute simultaneous confidence intervals on
the results on a number of benchmark test functions for alternative algorithms. As we will show later,
the combination of a symmetric Latin hypercube design and the cubic RBF with a linear polynomial tail
generate a very effective local response surface approximation that enhances the performance of an evolution

strategy.

December 3, 2002 DRAFT

II. EVOLUTIONARY ALGORITHMS
A. Overview

Figure 1 outlines a typical evolutionary algorithm ([39]). P(t) denotes the population at generation ¢, Q(t)
is a special set of individuals that has to be considered for selection during generation ¢ (i.e. Q(t) = P(t) for
an elitist algorithm, or Q(t) = @) for a non-elitist algorithm), P"(¢) represents the offspring population that
has been generated by means of mutation and/or recombination. Populations are evaluated by computing
the objective function values (or sometimes fitness values) and selection is made by choosing the individuals
with the best objective function values.

There are three main types of evolutionary algorithms [39], [40], [41]: genetic algorithms (GAs) ([42], [43]),
evolution strategics (ESs) ([35], [44], [45], [46], [47], [48], [49]), and evolutionary programming (EPs) ([50],
[51]). Genetic algorithms have been used extensively for solving mostly discrete optimization problems. On
the other hand, evolution strategies and evolutionary programming algorithms have been used mostly on
continuous optimization problems. In the context of optimization in real-valued search spaces, one advantage
of ESs and EPs over ordinary GAs is that they allow self-adaptation of the parameters of the algorithm.
In an ES or an EP, typical parameters are the standard deviations of the normal random mutation on the
different components of a solution. By self-adaptation of parameters, we mean that the algorithm not only
evolves a good set of solutions but it also evolves a good set of parameter values.

In this investigation, we use a particular type of evolution strategy, called (i, A)-ES, which was originally
proposed by Schwefel [35]. Our choice of this particular evolutionary algorithm does not imply that we think
this is the best evolutionary algorithm to use for continuous global optimization. We selected this algorithm
because this is among the simplest of the evolutionary optimization algorithms that perform reasonably well
on continuous optimization problems. Note that our goal is simply to demonstrate how we can use local
response surface approximations to enhance an evolutionary algorithm and the (u, A)-ES appears to be a

sufficient example for this purpose. We shall describe this algorithm in detail in the next section.

B. Description of the (u,X)-ES with Uncorrelated Mutations

Suppose we wish to minimize a real-valued function f of d continuous variables. We shall represent each
solution as a vector z of length d. In a typical ES, an individual is represented as a vector (z,c), where
z € R is a feasible solution to the problem and o € (R+)d is the parameter vector (i.e. vector of standard
deviations of the normal random mutations on the different components of a solution) that gave rise to .
The individuals in generation g will be denoted by (z9,9) and the j** component of the vectors z¢ and 9
will be denoted by z9(j) and o9(j), respectively. Below is a detailed description of the (u, A)-ES suggested
by Schwefel [35] as described in Béck [40]. In the algorithm below, p is the number of parents and A is the

number of offspring in each generation.

(1, A)-ES with Uncorrelated Mutations

(1). Set 7' = 1/\/% and set 7 =1/ 2V/d.

December 3, 2002 DRAFT

(2). Set the generation index g = 0. Generate the initial set of parents (z9,0?),..., (zg, 02).
(3). Set g := g+ 1. Generate X intermediate offspring (u{,af),..., (u,af) € R? by discrete recombination
on the solution variables and (panmictic) intermediate recombination of the mutation rates. That is, for
eachz=1,..., A, we perform the following steps:

(a). Select two parents by selecting two distinct indices s;, t; uniformly at random from the set {1,...,u}.

Then for each j = 1,...,d, generate a uniform random number w; ; € [0,1] and set

2l 7V() i wig < 1/2 @

ug (4) =
mg‘?_l) () otherwise

(b). Select an index h; uniformly at random from the set {1,...,u}. Then for each j = 1,...,d, select

another index k; ; uniformly at random from the set {1,...,x}, and set
. -1 . -1 .
od(j) = () (@) + 03V ()2 3)

(4). Modify the X intermediate offspring (uf,of),..., (u§, o) into (v{,57),...,(v],B5) by applying the
following mutation operation. For each : = 1,..., X, we perform the following steps:
(a). Generate random numbers &, 2z 1,..., 2.4, (G ~ N(0,1).

(b). For each j=1,...,d, set
B (7) = af (4) - exp(7'&i + 72 5) (4)

0! (§) = ud(§) + L) - G (5)

(5). Compute the function values f(v{),..., f(v{) associated with the A offspring (v{,3Y),..., (v{,3%).

(6). Rank the offspring according to their associated function values. Select the p offspring corresponding to

the lowest function values. This will be the set of parents for the next generation, i.e. (z{,07),..., (mf‘“)
will be the individuals from {(v{,7),. .., (v],05)} with the lowest associated function values.

(7). If the stopping criteria are not satisfied, return to 2.

A few remarks are in order. First, in the standard implementation, the initial parent solutions are selected
uniformly at random throughout the entire domain. Second, based on investigations with a particular
objective function (the sphere model), Schwefel [52] provided some guidelines for selecting y and A. In
particular, he suggested that u should be larger than one and p/A =~ 1/7 to optimize the accelerating
effect of self-adaptation. Third, in the computational experiments, we found ¢ = 0.05 min;<;<q(b; — a;),
1 =1,...,d to be a reasonable setting for the initial mutation rates for the test functions considered. Finally,
note that step 2 could result in an offspring that is outside the box domain. In this case, we simply replace

z{ by max(a, min(z?,b)), where max and min are performed componentwise.

III. RESPONSE SURFACE APPROXIMATION MODELS

As mentioned earlier, we will use local response surface approximation to improve the performance of

an evolutionary optimization algorithm on costly black box functions. The local approximation will be

December 3, 2002 DRAFT

implemented as follows. Suppose we are optimizing a continuous function f defined on a box D C R?. Let
S C D be the set of points where the function values are known and let k = (d + 1)(d + 2)/2. To estimate
the function value at a point u € D, we use the information on the function values of the k nearest neighbors
of u among the points in S to build a response surface model fu that approximates f at the vicinity of w.

An estimate of f(u) is then given by fu (w).

A. Polynomial Regression

There are several response surface models that can be used to obtain local approximations. One of the
simplest is polynomial regression which we now discuss. For convenience, we first define II¢, to be the

linear space of polynomials in d variables of degree less than or equal to m. We also define 114, = {0}.

Assume that we are given n distinct points 1,...,z, € R% and that we know the function values y; =
f(z1)s--.,Yn = f(zn) at these points. Now suppose we wish to fit a polynomial of degree m in d variables
around a query point u € R? using the data points (z1,91),-..,(Zn,yn). Let 7 be the dimension of TI¢, and
let p1,...,pm be the natural basis of this linear space. (By a simple combinatorial argument, it is easy to
see that m = (m;d) .) In this case, we wish to fit a function of the form
m
p(z) = Zcipi(:w), z € R? (6)
i=1
where ¢; € R for : = 1,...,m. In polynomial regression, we determine the coeflicients ¢; that minimize the

sum of squared residuals

> (Uk -y Cipi(%)) (7)

k=1 i=1
Let é = (é1,...,¢m) be the regression coefficients that minimize the expression (7) and let
[0
Blz) = épi(z), z=€R? (8)
i=1

Moreover, define
Y1 pi(z1) ... pm(z1)
y=1| : |, P= : : : (9)
Yn p1(xn) .. pal(Tn)
Assuming that P has full column rank, it follows from elementary statistical theory that
é=(PTP)~tPTy. (10)
In the case of quadratic regression, i = (d + 1)(d + 2)/2 and the goal is to fit a function of the form:

d d d
p(t) =B+ D> Biti+ Y > Bijtitj, t =(t1,...,ta) € R? (11)
i=1

=1 j=1
A good reason for using quadratic polynomials in the context of local approximation by nearest neigbors is

that it is among the simplest surface that can capture nonlinearity.

December 3, 2002 DRAFT

B. Radial Basis Function Interpolation

An alternative to polynomial regression is to use a response surface model based on radial basis functions.
As before, assume that we are given n distinct points 1,. .., z, € R? where the function values are known.

In this method, we use an interpolant of the form

s(@) =Y wi(lle = will2) + p(e), € R (12)
i=1
where w; € Rfori=1,...,n, pisin II¢, (the space of polynomials in d variables of degree less than or equal

to m), and ¢ is one of the following forms:

o(r) = r (linear),

p(ry = r? (cubic),

d(r) = r’logr (thin plate spline), r >0, (13)
¢(r) = /r>+7° (multiquadric),

o(r) = e (Gaussian),)

where v is a positive constant.

Fix ¢. Define the matrix ® € R"*" by:

(®)ij := ¢(llwi — =5l]), 45=1,....n. (14)
Moreover, define

—1 if ¢ is Gaussian
me = 0 if ¢ is linear or multiquadric (15)

1 if ¢ is cubic or the thin plate spline

and let m > my. As before, let 7 be the dimension of the linear space 114, let p1,...,pm be a basis of this
linear space, and define the matrix P as in (9).
In this model, the RBF that interpolates the points (z1, f(1)),. .., (Zn, f(Zx)) is obtained by solving the

system

® P w F
= , (16)
PT 0 [Om
where F = (f(z1),.--, f(zn))T, w = (w1,...,w,)T € R™ and ¢ = (c1,...,c5)T € R™. Powell [13] showed
that the matrix

A= (I)T P e R(ntm)x(ntm) (17)
P 0
is nonsingular if and only if z;,...,z, satisfy the property:
gelld, and q(z;)=0,i=1,...,n, = ¢=0. (18)

December 3, 2002 DRAFT

10

(In the Gaussian case with m = —1, P and the above condition are omitted.) Hence, in this case, the
resulting RBF interpolant s(z) is unique.

In the later numerical investigation, we used a particular RBF model where ¢ is cubic and p(z) is a linear
polynomial. There are theoretical and numerical reasons why we picked the cubic form. Recent studies by
Gutmann [31] indicate that the linear, cubic, and thinplate RBFs have better theoretical properties than
the multiquadric and Gaussian RBFs. Moreover, numerical investigations that do not use evolutionary

algorithms suggest that cubic RBF's are better than thinplate and multiquadric RBF's [9].

IV. AN ENHANCED EVOLUTIONARY ALGORITHM FOR CoOSTLY BLAackK Box OPTIMIZATION
A. General Description

The main idea behind this approach to costly black box optimization is to reduce the number of costly
function evaluations in each generation of an evolutionary algorithm by estimating the function values of the
offspring using local response surface approximations. Using the estimated function values of the offspring,
we select a subset of the offspring where the costly function will be evaluated. Given a limit on the function
evaluations of an evolutionary optimization algorithm, the reduction of costly evaluations in each generation
will allow us to run the evolutionary algorithm for more generations than is possible with the standard
implementation.

We now describe the details of the proposed approach. Assume that we are given an evolutionary algorithm
(EA) and that we wish to optimize a continuous function f defined on a box D C R4, First, in order to do
response surface approximation, we need to know the values of f at some initial sample of points in D. An
excellent way to do this is to select a particular space-filling experimental design, evaluate the costly function
at each of the design points, and store the data so that it can be used for fitting response surface models.
In the next section, we describe the space-filling experimental design that was used in this investigation.
Second, since we already know the function values at the experimental design points, we select a subset
of the design points to become the initial parent population. We then proceed to generate offspring as we
would in an ordinary implementation of the EA.

Typically, in each generation of an EA, we generate a fixed number of offspring (usually a large number)
via mutation and/or recombination. In the standard implementation of an EA, we would evaluate the costly
objective function f(x) at each of these offspring. In the proposed procedure, we first estimate the function
value at each of these offspring using local approximation as described earlier in Section III. Based on the
estimates of the function values of the offspring, we select offspring that have the lowest function value and
perform the costly function evaluation on them. Once we have performed the costly evaluation, we proceed
with the evolutionary algorithm as though we only generated the offspring for which the costly function was
evaluated. That is, the selection process for the parents of the next generation will then be restricted to the
offspring for which the actual function values have been calculated plus the set Q(t) (in Figure 1) in the case
of an elitist algorithm.

Finally, note that in a standard implementation of an evolutionary optimization algorithm, only the

December 3, 2002 DRAFT

11

function values of the current population are normally retained. Hence, a lot of good information on the
function values of other points computed in prior generations are discarded. In contrast, in the proposed
enhanced EA, all information on the previously evaluated points are stored and can be used for estimating
the function values of new offspring. In this sense, the proposed enhanced EA is less wasteful than the
standard implementation of the same EA.

Figure 2 shows a pseudo-code of an enhanced evolutionary optimization algorithm for costly black box
functions. In the context of enhancing a (u, A)-ES, the resulting algorithms will be called (u, A, v)-ESQR for
quadratic regression and (p, A, v)-ESRBF for radial basis function interpolation. In this notation, y is still
the number of parents, A is still the number of offspring generated in each generation, and v is the fixed

number of offspring out of A that will be selected for costly function evaluation.

B. Space-Filling Ezxperimental Designs

There are several types of experimental designs that we can use to get the initial points for the response
surface approximations. Koehler and Owen [32] describe various ways of choosing the experimental design
points for computer experiments. In this investigation, we concentrate only on Latin hypercube designs.

One desirable characteristic of Latin hypercube designs is that the user can specify the number of design
points. In addition, if we project these design points onto any single dimension, then the result is a regular
grid in one dimension. Latin hypercube designs were proposed by McKay et al. [563]. A procedure for
obtaining a Latin hypercube design (LHD) of size m is shown below. In the algorithm below, assume that

the domain D is given by (1).

Construction of a Random LHD

(1). For each j = 1,...,d, partition the interval [a;,b;] into m sub-intervals of equal length and let cg.i)
denote the midpoint of the i** sub-interval of [a;,b;].
(2). For each j =1,...,d, randomly select a permutation of 1,...,m and denote it by =;.

(3). Now for each i = 1,...,m, the i** Latin hypercube design point is given by

((mi(2)) (ma(7)) (ra(3))).

cy ,Cy yeaesCy

Observe that if we fix the box domain of f, then an LHD is completely determined by the d permutations
selected in step 3. Hence, an LHD of size m for R? may also be defined as an m x d array whose columns are
permutations of 1,...,m. In fact, in the computational experiments, we generated Latin hypercube designs
only for domains of the form [0, 1]d since these designs can be rescaled and used for any box domain.

Another thing to note from the above LHD description is that the procedure yields a random LHD.
However, in practice, some randomly generated LHDs may have poor estimation and prediction properties.
Hence, it is not enough to simply pick a particular LHD. We need to somehow impose some optimality
conditions on the LHDs. In the literature, there are several papers that deal with optimal Latin hypercubes

and they also discuss ways of creating optimal LHDs ([33], [54], [55]). However, finding an optimal LHD can

December 3, 2002 DRAFT

12

be time consuming. Now a recent paper by Ye et al. [34] provides a compromise between computing effort
and design optimality. They proposed using symmetric LHDs instead of ordinary LHDs. A symmetric Latin
hypercube design (SLHD) of size m is an m x d LHD (in permutation notation as described above) with the
following property: if (ai,...,aq) is one of the rows, then the vector (m +1 —ay,...,m + 1 — ag) must be
another row in the design matrix. That is, an SLHD is simply an LHD whose design points are symmetric
about the center of the box domain. The authors showed that SLHDs have some advantages over the regular
LHDs with respect to criteria such as entropy and minimum intersite distance. Hence, for this investigation,
we have used a randomly generated SLHD to get an initial sample of points where the costly function will
be evaluated. A procedure for constructing randomly generated SLHDs is given below. Note that we only

need to replace step 2 of the procedure for constructing an LHD.

Construction of a Random SLHD

(1). Initialize an array M of size m X d.
(2). If mis odd, set M(ZH, j) =2t for j =1,...,d.
(3). Define k := [mT_l]
(4). For each j =1,...,d, randomly select a permutation of 1,...,%k and denote it by ;.
(5). For each pair (4,7), where i = 1,...,k and j = 1,...,d,
(a). Generate a uniform random number w; ; € [0, 1].
(b). If w;; <1/2, and set M(%,5) = +;() and M(m+1—1i,5) =m + 1 —1);(i). Otherwise, set M(z,j) =
m+1—1;(i) and M(m+1—1,5) = 1;(%).
(6). For each j = 1,...,d, let 7; be the 4t* column of M and continue with Step 3 of the above LHD

construction.

V. COMPUTATIONAL EXPERIMENTS
A. Test Functions

Computational experiments were performed on some benchmark test functions for global optimization in
order to compare the performance of ES with its enhanced versions. The test functions include the classical
Dixon-Szegé test functions for global optimization [36] and the 10-dimensional Rastrigin and Ackley test
functions (which we refer to as Rastriginl0 and Ackleyl0, respectively). These functions are not really
costly to evaluate but their shapes are complex and multimodal, and hence, the relative performance of
algorithms on these test functions is expected to mimic performance on costly functions. Table I shows the
characteristics of the Dixon-Szego test functions. The actual functional expressions for the Dixon-Szego test
functions can be found in [36]. In this paper, we will use the following versions of the d-dimensional Rastrigin

and Ackley test functions:

d
(Rastrigin) f(z)= Z(mf —cos (2mz;)), x; € [-2,2]

i=1

December 3, 2002 DRAFT

13

TABLE 1

THE DIXoN-SzEGO TEST FUNCTIONS [36].

Test Function Dim Domain Number of | Number of | Approz Global

Local Min | Global Min Min Value
Branin 2 [—5,10] x [0, 15] 3 3 0.398
Goldstein-Price | 2 [—2, 22 4 1 3
Hartman3 3 [0,1]® 4 1 —3.86
Shekelb 4 [0,10]* 5 1 —10.1532
Shekel7 4 [0,10]% 7 1 —10.4029
Shekel10 4 [0,10)* 10 1 —10.5364
Hartman6 6 [0,1]° 4 1 -3.32

(Ackley) f(z) = —20exp

Ul

— exp (Zcos(2mvi)> , z; € [—2,2]

The d-dimensional Rastrigin and Ackley test functions are both highly multimodal with a unique global
minimum point at (0,...,0). The global minimum values for the d-dimensional Rastrigin and Ackley test

functions are —d and —20 — e, respectively.

B. Specific Algorithms Used for the Ezperiments

We shall compare the performance of a (u, A)-ES, (u, A, v)-ESQR, (u, A, v)-ESRBF, and (u,v)-ES on the
test functions for selected values of p, A, such that p < v < A. In particular, we use gy = 8, A = 50,
and v = 20 for the Branin, Goldstein-Price, and Hartman3 test functions; we use = 16, A = 100, and
v = 40 for the Shekel and Hartman6 test functions; and finally, we use p = 32, A = 200, and v = 80 for the
Rastriginl0 and Ackley10 test functions. Note that the values of p and A are in accordance with Schwefel’s
recommendation that u/A =~ 1/7 [52]. The (u, A, v)-ESQR and the (u, A, v)-ESRBF are modified versions of
an ES with p parents that perform exactly v function evaluations in each generation. Since these algorithms

somehow behave like a (i, v)-ES, it is also necessary to compare these algorithms with the (u,)-ES.

C. Number of Experimental Design Points

Recall that in order to implement the enhanced versions of an ES, we need to allocate some function
evaluations for the experimental design. For quadratic regression, we need a minimum of (d + 1)(d + 2)/2
points where the function values are known. For RBF interpolation, there is really no requirement on the
number of points. In general, determining the number of points to allocate for the experimental design is
not easy. If we allocate too few for the experimental design, then the approximations will be poor. On the
other hand, if we allocate too many then we would be wasting function evaluations that are better spent

in the actual optimization. The choice of the number of experimental design points should be based on

December 3, 2002 DRAFT

14

whatever knowledge is available on the underlying response surface (i.e. does it have many bumps or is it
quite smooth) as well as the maximum number of function evaluations allowed. In the implementation of the
ESQR and ESRBF, we standardized the approach for all test functions by fixing the number of experimental
design points to 4 times the minimum number required for quadratic regression. That is, for each trial of
an ESQR or ESRBF, we randomly generated a symmetric Latin hypercube design of size 2(d + 1)(d + 2).
Note that the ESRBF does not really need this number of experimental design points to get started but the
number was set the same for both the ESQR and ESRBF for comparison purposes.

D. Comparison of the Algorithms

We now describe the actual experiments that were performed to compare the different algorithms on
the test functions. For each of the test functions, each of the two ES algorithms were run 100 times,
each time using a different randomly generated set of initial parent solutions. Each of the enhanced ES
algorithms (ESQR and ESRBF) were also run 100 times, each time using a different randomly generated
SLHD. Moreover, for comparison purposes, we made the set of experimental design points identical for ESQR
and ESRBF in any given run.

The performance of the algorithms were compared based on the mean of the best values obtained in the
different runs. The results are summarized in Figures 3-11. For the moment, ignore the error bars on the
plots. To highlight the differences in performance, the plots were started at m function evaluations, where
m = 2(d + 1)(d + 2) is the number of experimental design points used for ESQR and ESRBF.

From the plots in Figures 3-9, we can see that the (8,50,20)-ESQR outperforms the (8,50)-ES and the
(8,20)-ES in terms of the mean best value on the Branin, Goldstein-Price and Hartman3 test functions.
Similarly, the (16,100,40)-ESQR outperforms the (16,100)-ES and the (16,40)-ES on the Shekel5, Shekel?,
Shekell0 and Hartman6 test functions. The same observations can be said about the (8,50,20)-ESRBF and
the (16,100,40)-ESRBF. In fact, the performance of the ESRBF appears to be only slightly better than
that of the ESQR on the Dixon-Szego test functions and this difference in performance is not statistically
significant as will be seen in section E.

From the plots in Figures 10 and 11, the ESRBF algorithm is better than the two ES algorithms and
also better than the ESQR algorithm on the harder 10-dimensional test functions. Moreover, for these test
functions, only the ESRBF scheme was helpful in improving the performance of a (32, 200)-ES. These results
suggest that RBF models are much better than quadratic models at capturing the complexities of highly

multimodal test functions.

E. Statistical Analysis of the Results

We performed single-factor analysis of variance (ANOVA) on the results at several uniformly spaced
evaluation points for each test function. The factor under consideration is the algorithm and it has four
levels corresponding to the (u, A)-ES, (i, A, v)-ESQR, (u, A, v)-ESRBF, and (i, v)-ES. The goal of the single-

factor ANOVA is to determine whether the observed differences in the means of the best values of the four

December 3, 2002 DRAFT

15

algorithms (at a fixed evaluation point and for a given test function) are statistically significant. A brief
description of the single-factor ANOVA model is in the appendix. The results of ANOVA indicate that the
mean best values are significantly different at several evaluation points in all test functions.

After we have established that the means of the best values for the four algorithms are different for some
test function at a certain evaluation point, the next step is to determine which algorithm is significantly
better than another for the same test function and the same evaluation point. This is can be accomplished
by performing multiple comparison procedures which are normally integrated with the ANOVA procedure
([56], [57])-

There are essentially two ways of performing multiple comparisons of the factor level means. In the
traditional approach, the differences between every pair of factor level means are simultaneously tested and
compared to zero. Here, simultaneous testing means that the level of significance (or the probability of a
Type I error) is controlled for a family of hypotheses instead of for a single hypothesis. Differences that are
significantly different from zero indicate that one of the algorithms involved in the difference is significantly
better than the other. The alternative approach is to construct simultaneous confidence intervals ([56], [58])
for the means of the best values for each algorithm. Significant differences between the means of the best
values exist only when the confidence intervals do not overlap. We have used the latter approach since it is
more convenient for presentation purposes. In the appendix, we describe how these simultaneous confidence
intervals are constructed.

To determine which algorithms resulted in significantly lower mean best values, we constructed simul-
taneous confidence intervals of the form (31) (in the appendix) for the mean best values of the different
algorithms at several evaluation points. These simultaneous confidence intervals were represented as error
bars in the plots on Figures 3-11. The level of significance for the confidence intervals was set at a = 0.05.

For the Dixon-Szego test functions, the simultaneous confidence intervals indicate that the mean best value
of the (u, A, v)-ESQR and (u, A, v)-ESRBF algorithms are in fact significantly better than that of the (u, A)-
ES and the (u,v)-ES algorithms for all of the evaluation points considered except at the beginning or at
the later evaluations points where most of the trials (of the different algorithms) have converged. Moreover,
although the (u, A, v)-ESRBF algorithm appears to be slighly better than the (u, A, v)-ESQR algorithm on
the Dixon-Szego test functions (see the plots in Figures 3-9), the difference in performance between the two
algorithms is generally not significant.

For the Rastriginl0 and Ackleyl0 test functions, the simultaneous confidence intervals indicate that the
(4, A, v)-ESRBF algorithm was significantly better than all the other algorithms at all evaluation points
considered. Moreover, for these test functions, the (u, A, 7)-ESQR algorithm was no longer better the the
(4, A)-ES and the (p,v)-ES algorithms. The results on these two highly multimodal test functions indicate
that the RBF approach is to be preferred over quadratic regression when there is reason to believe that the

function to be optimized is highly multimodal.

December 3, 2002 DRAFT

16

VI. SUMMARY AND CONCLUSIONS

In this paper, we have shown that the performance of an evolutionary algorithm can be substantially
improved with the use of a space-filling experimental design and local response surface approximation via
k-nearest neighbors, where k = (d + 1)(d + 2)/2 and d is the dimension of the problem. In the proposed
scheme, the objective function value of each offspring is first estimated by fitting a response surface model
using the nearest (d+ 1)(d + 2)/2 previously evaluated points, and then a subset of the offspring solutions
are selected for costly function evaluation based on the estimates of their objective function value.

We have compared four algorithms: a (u,A)-ES, a (p, A, v)-ESQR (an ES which uses local quadratic
approximation), a (u, A,v)-ESRBF (an ES which uses local augmented cubic RBF interpolation), and a
(u,v)-ES. Both local response surface algorithms use a symmetric Latin hypercube design to select points
for initial function evaluations. The performance of the four algorithms were compared on nine benchmark
test functions for global optimization: the seven Dixon-Szego test functions, and the 10-dimensional Rastrigin
and Ackley test functions. We performed multiple trials for each algorithm on each test problem, analyzed
the results with ANOVA, and compared the performance of the different algorithms using simultaneous
confidence intervals.

The statistical analysis indicates that the ES plus local augmented cubic RBF interpolation is significantly
better than the conventional ES algorithms on all test functions. The ES plus local quadratic approximation
is significantly better than the ES algorithms without local approximation on the Dixon-Szegé test functions.
However, for the harder 10-dimensional test functions, the ES plus local quadratic approximation was not
much better, and sometimes worse, than the (u, A)-ES. Moreover, the RBF approach was consistently better
than the quadratic approximation approach on all test functions although the difference in performance
is statistically significant only on the harder test functions (Rastriginl0 and Ackleyl0). This is the first
evidence of the superiority of an RBF approach with an evolutionary algorithm since the only prior study
comparing RBF networks and quadratic regression with an evolutionary algorithm used a Gaussian type of
RBF, which was shown to be inferior to a quadratic approximation [30].

The results of the computational experiments, which were subjected to rigorous statistical analysis, sug-
gest that the approach that uses space-filling experimental designs together with local response surface
approximations via k-nearest neighbors has potential for success in enhancing evolutionary algorithms for
computationally expensive real-world problems. Moreover, the RBF approach for local response surface
approximation appears to be more promising than the quadratic approximation approach on more difficult

higher-dimensional problems.

ACKNOWLEDGEMENTS

We would like to thank the Intelligent Information Systems Institute (IISI) directed by Dr. Carla Gomes
for providing GRA funding for Rommel Regis (AFOSR, grant F49620-01-1-0076). We would also like to thank
Prof. David Ruppert and Prof. Bruce Turnbull of the School of Operations Research and Industrial Engi-
neering, Prof. Rich Caruana of the Department of Computer Science, and Dr. Sophonie Nshinyabakobeje of

December 3, 2002 DRAFT

17

the Department of Biological Statistics and Computational Biology for their technical input and comments.

REFERENCES

[1] G.E.P. Box and N.R. Draper, Empirical Model-Building and Response Surfaces, John Wiley & Sons, Inc., New York, 1987.
[2] A.L. Khuri and J.A. Cornell, Response Surfaces, Marcel Dekker, Inc., New York, 1987.

[

w

] R.H. Myers and D.C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed
Ezperiments, John Wiley & Sons, Inc., New York, 1995

[4] D. Jones, “A Taxonomy of Global Optimization Methods Based on Response Surfaces,” Journal of Global Optimization,
vol. 21, no. 4, pp. 345-383, 2001.

[5] D.R. Jones, M. Schonlau and W.J. Welch, “Efficient global optimization of expensive black-box functions,” Journal of
Global Optimization, vol. 13, no. 4, pp. 455-492, 1998.

[6] J. Sacks, W.J. Welch, T.J. Mitchell and H.P. Wynn, “Design and Analysis of Computer Experiments,” Statistical Science,
vol. 4, no. 4, pp. 409-435, 1989.

[7] T.W. Simpson, T.M. Mauery, J.J. Korte and F. Mistree, Comparison of Response Surface and Kriging Models for Mul-
tidisciplinary Design Optimization, Proc. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, St. Louis, MO, vol. 1, pp. 381-391, 1998.

[8] M. Bjorkman and K. Holmstrom, “Global Optimization of Costly Nonconvex Functions Using Radial Basis Functions,”
Optimization Engineering, vol. 1, no. 4, pp. 373-397, 2000.

[9] H.-M. Gutmann, “Radial Basis Function Methods for Global Optimization,” PhD Thesis, Department of Applied Mathe-
matics and Theoretical Physics, University of Cambridge, Sept. 2001.

[10] H.-M. Gutmann, “A Radial Basis Function Method for Global Optimization,” Journal of Global Optimization, vol. 19,
no. 3, pp. 201-227, 2001.

[11] T. Ishikawa and M. Matsunami, “An Optimization Method Based on Radial Basis Functions,” IEEE Transactions on
Magnetics, vol. 33, no. 2, pp. 1868-1871, 1997.

[12] T.Ishikawa,Y. Tsukui and M. Matsunami, “A Combined Method for the Global Optimization Using Radial Basis Function
and Deterministic Approach,” IEEE Transactions on Magnetics, vol. 35, no. 3, pp. 1730-1733, 1999.

[13] M.J.D. Powell, The theory of Radial Basis Function Approximation in 1990, in Advances in Numerical Analysis, Volume
2: Wavelets, Subdivision Algorithms and Radial Basis Functions, W. Light, Ed. Oxford University Press, pp. 105-210,
1992.

[14] M.J.D. Powell, Recent research at Cambridge on radial basis functions, in New Developments in Approzimation Theory,
International Series of Numerical Mathematics, Vol. 132, M. Muller, M. Buhmann, D. Mache and M. Felten, Eds.,
Birkhauser Verlag, Basel, pp. 215-232, 1999.

[15] W. Chen, and S. Varadarajan, Integration of Design of Experiments and Artificial Neural Networks for Achieving Affordable
Concurrent Design, 38" AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and
ATAA/ASME/AHS Adaptive Structures Forum, AIAA-97-1230, Kissimmee, FL, 1997.

[16] W. Liu and S.M. Batill, Gradient-Enhanced Neural Network Response Surface Approximations, AIAA Paper 2000-4923,
AIAA Multidisciplinary Analysis and Optimization Conference and Ezhibit, Long Beach, California, 2000.

[17] D. Padmanabhan and S.M. Batill, An Iterative Concurrent Subspace Robust Design Framework, ATAA Paper 2000-4841,
AIAA Multidisciplinary Analysis and Optimization Conference and Ezhibit, Long Beach, California, 2000.

[18] R.S. Sellar and S.M. Batill, Concurrent Subspace Optimization Using Gradient-Enhanced Neural Network Approximations,
ATAA Paper 96-4019, 6% Annual AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
Bellevue, Washington, 1996.

[19] R.S. Sellar, S.M. Batill, and J.E. Renaud, Response Surface Based, Concurrent Subspace Optimization for Multidisciplinary
System Design, ATAA Paper 96-0714, AIAA Aerospace Sciences Meeting and Ezhibit, Reno, Nevada, 1996.

[20] A. Ratle, “Accelerating the convergence of evolutionary algorithms by fitness landscape approximation,” in Parallel
Problem Solving from Nature - PPSN V, Springer Verlag, Lecture Notes tn Computer Science, T. Back, A.E. Eiben, M.
Schoenauer, and H.-P. Schwefel, Eds., Berlin: Springer, 1998, pp. 87-96.

[21] A. Ratle, “Optimal sampling strategies for learning a fitness model,” in Proc. of the 1999 Congress on Evolutionary

Computation, vol. 3, pp. 2078-2085, Piscataway, NJ, 1999, IEEE Press.

December 3, 2002 DRAFT

18

[22] M. El-Beltagy, P. Nair, and A. Keane, “Metamodeling Techniques for Evolutionary Optimization of Computationally
Expensive Problems: Promises and Limitations,” in Proc. of the Genetic and Evolutionary Computation Conference,
vol. 1, W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, Eds., San Francisco,
California: Morgan Kaufmann, 1999, pp. 196-203.

[23] M.A. El-Beltagy and A.J. Keane, “Evolutionary Optimization for Computationally Expensive Problems using Gaussian
Processes,” in Proc. of the Int. Conf. on Artificial Intelligence IC-AI ‘2001, Volume II, Hamid Arabnia, Ed., CSREA
Press, pp. 708-714, Las Vegas, Nevada, 2001.

[24] Y. Jin, M. Olhofer, and B. Sendhoff, “On Evolutionary Optimization with Approximate Fitness Functions,”, in Proc. of
the Genetic and Evolutionary Computation Conference, pp. 786-792, Las Vegas, 2000.

[25] Y. Jin, M. Olhofer, and B. Sendhoff, “Managing Approximate Models in Evolutionary Aerodynamic Design Optimization,”
in Proc. of the IEEE Congress on Evolutionary Computation, vol. 1, pp. 592-599, Seoul, Korea, May 2001.

[26] Y. Jin, M. Olhofer, and B. Sendhoff, “A Framework for Evolutionary Optimization with Approximate Fitness Functions,”
IEEE Transactions on Evolutionary Computation, vol. 6, no. 5, pp. 481-494, 2002.

[27] K. Rasheed, “An Incremental-Approximate-Clustering Approach for Developing Dynamic Reduced Models for Design
Optimization,”

[28] K. Rasheed, X. Ni, and, S. Vattam, “Comparison of Methods for Developing Dynamic Reduced Models for Design
Optimization,” in Proc. of the Congress on Evolutionary Computation (CEC), 2002.

in Proc. of the Congress on BEvolutionary Computation (CEC), 2000.

[29] Y. Jin, “Fitness Approximation in Evolutionary Computation - A Survey,” in Proc. of the Genetic and Evolutionary
Computation Conference, pp. 1105-1112, New York, July 2002.

[30] K. Rasheed, S. Vattam, and X. Ni, “Comparison of Methods for Using Reduced Models to Speed Up Design Optimization,”
in Proc. of the Genetic and Evolutionary Computation Conference (GECCO), 2002.

[31] H.-M. Gutmann, “On the Semi-Norm of Radial Basis Function Interpolants,” Technical Report DAMTP 2000/NA04,
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, England, 2000.

[32] J.R. Koehler and A.B. Owen, “Computer Experiments,” in Handbook of Statistics, 13: Design and Analysis of Computer
Ezperiments, S. Ghosh and C.R. Rao, Eds., North-Holland, 1996, pp. 261-308.

[33] M.D. Morris and T.J. Mitchell, “Exploratory Designs for Computational Experiments,
and Inference, vol. 43, pp. 381-402, 1995.

[34] K.Q.Ye, W. Li and A. Sudjianto, “Algorithmic Construction of Orthogonal Symmetric Latin Hypercube Designs,” Journal
of Statistical Planning and Inference, vol. 90, 2000.

? Journal of Statistical Planning

[35] H.-P. Schwefel, Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie, vol. 26 of Interdisci-
plinary Systems Research, Birkhauser, Basel, 1977.

[36] L.C.W. Dixon, and G. Szegd, The Global Optimization Problem: An Introduction, in Towards Global Optimization 2,
L.C.W. Dixon and G. Szeg6, Eds., North-Holland, Amsterdam, pp. 1-15, 1978.

[37] L.A. Rastrigin, Systems of Extremal Control, Nauka, Moscow, 1974. (in Russian)

[38] D.H. Ackley, A Connectionist Machine for Genetic Hillclimbing, Kluwer, Boston, 1987.

[39] T.Back and H.-P. Schwefel, Evolutionary Computation: An Overview, Proc. of the 1996 IEEE Int. Conf. on Evolutionary
Computation, 1996.

[40] T. Back, Bvolutionary Algorithms in Theory and Practice, Oxford University Press, New York, 1996.

[41] D.B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE Press, Piscataway, New
Jersey, 1995.

[42] J.H. Holland, “Outline for a Logical Theory of Adaptive Systems,” Journal of the Association of Computing Machinery,
vol. 3, pp. 297-314, 1962.

[43] J.H. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, MI, 1975.

[44] I. Rechenberg, “Cybernetic Solution Path of an Experimental Problem,” Royal Aircraft Establishment, Library translation
No. 1122, Farnborough, Hants., UK, August 1965.

[45] 1. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen FEuvolution,
Frommann-Holzboog, Stuttgart, 1973.

[46] I. Rechenberg, Evolutionsstragie ‘94, volume 1 of Werkstatt Bionik und Evolutionstechnik, Frommann-Holzboog, Stuttgart,
1994.

December 3, 2002 DRAFT

19

[47] H.-P. Schwefel, Kybernetische Evolution als Strategie der experimentellen Forschung in der Strémungstechnik, Diplomar-
beit, Technische Universitat Berlin, 1965.

[48] H.-P. Schwefel, Numerical Optimization of Computer Ezperiments, Wiley, Chichester, 1981.

[49] H.-P. Schwefel, Evolution and Optimum Seeking, Sixth-Generation Computer Technology Series, Wiley, New York, 1995.

[50] L.J. Fogel, “Toward Inductive Inference Automata,” in Proceedings of the International Federation for Information
Processing Congress, pp. 395-399, Munich, 1962.

[561] L.J. Fogel, A.J. Owens, and M.J. Walsh, Artificial Intelligence through Simulated Evolution, Wiley, New York, 1966.

[62] H.-P. Schwefel, “Collective Phenomena in Evolutionary Systems,” in Preprints of the 31st Annual Meeting of the Inter-
national Society for General System Research, Budapest, vol. 2, pp. 1025-1033, June 1987.

[563] M. McKay, R. Beckman and W. Conover, “A comparison of three methods for selecting values of input variables in the
analysis of output from a computer code,” Technometrics, vol. 21, pp. 239-246, 1979.

[54] J.-S. Park, “Optimal Latin-hypercube Designs for Computer Experiments,” Journal of Statistical Planning and Inference,
vol. 39, pp. 95-111, 1994.

[65] W. Li, “Optimal Designs Using CP Algorithms,” in Proc. for the 2nd World Conference of the International Association
for Statistical Computing, pp. 130-139, 1997.

[56] R.G. Miller, Jr., Simultaneous Statistical Inference, Springer-Verlag, New York, 1981.

[67] J. Neter, W. Wasserman, and M.H. Kutner, Applied Linear Statistical Models, Richard D. Irwin, Inc., Illinois, 1985.

[58] P.J. Bickel and K.A. Doksum, Mathematical Statistics, Prentice-Hall, Inc., New Jersey, 1977.

APPENDIX
[. SINGLE-FACTOR ANALYSIS OF VARIANCE

Detailed material on analysis of variance procedures can be found in [56], [57], [58]. Below is a short
summary of the material in [57].
The fized effects single-factor ANOVA model with r factor levels (or treatments) and n observations at

each factor level may be described as follows:
Yi; = pi + €ij, i=1,...,m;5=1,...,n (19)

where Y;; is the random variable representing the 4" observation for the i*? factor level, p; is the parameter
associated with the i** factor level, and €;; are independent N(0,02). It is easy to check that this model is

equivalent to the following:
Y;; are independent N (p;, 02) (20)

In the context of our investigation, the factor under consideration is the algorithm. It has 4 levels cor-
responding to the two conventional ES algorithms, ESQR and ESRBF. Moreover, Y;; is the best function
value encountered by the i*? algorithm during the j** trial.

Applying a fixed effects single-factor ANOVA on a data set essentially means fitting a model of the form
(20) using the method of least squares. The least squares estimator for p; is given by the ith factor level

sample mean which is given by

., = Lz Y (21)

December 3, 2002 DRAFT

20

Hence, the fitted value for the observation Y;; is simply f/;j = Y;.. Moreover, the error mean square, which
is defined by

Z::l E;":l(Y—” - }71)2

MSE = r(n—1)

(22)

is an unbiased estimator of 2.
When fitting any model to a set of data, it is important to check whether the assumptions of the model are
satisfied. In the case of the fixed effects single-factor ANOVA model, this can be accomplished by examining

the residuals
eij =Yij =Yy =Yy - Vi (23)

Ideally, the e;;’s should behave like independent and normally distributed random variables with constant
variance. If there are significant departures from this assumption, then we either take corrective measures
such as transformation of the data or we modify the model.

Assume that we have fitted an ANOVA model to data set, we have examined its residuals and found that
the model assumptions are satisfied (i.e. the model is appropriate for the data). Now we can proceed with
the analysis of the data. In a typical ANOVA implementation, one is generally interested in determining

whether or not the factor level means p; are equal. This can be accomplished by testing the following

hypotheses:
Ho: =2 = ... = [y
O M1 = U2 1% (9 4)
H,: not all p; are equal
The test statistic that is used for choosing between the above alternatives is given by
. MSTR
T = 25
MSE (29)
where
on(Yi —Y.)? _ im1 2y Yij
MSTR = 2=t - P and . = iz 2= Y (26)
r— rn

Now if we set the level of significance at « (the probability of Type I error), then the decision rule (also

known as the F' test) is given by

do not reject Ho if F* < F(1—a;r —1,7r(n—1))

(27)
reject Hp ifF*>F(l—a;r—1,r(n—1))

where F'(1 — a;r — 1,7(n — 1)) is the (1 — @)100 percentile of the F' distribution with » — 1 and r(n — 1)
degrees of freedom.

II. SIMULTANEOUS CONFIDENCE INTERVALS

The F test for determining whether or not the factor level means p; differ is just a preliminary test. If

the F' test does not lead to a rejection of the null hypothesis Hp, then we conclude that there is no relation

December 3, 2002 DRAFT

21

between the factor under consideration and the dependent variable and we are done. On the other hand, if
the F' test resulted in the rejection of the null hypothesis, then we know that not all factor level means are
equal. An obvious next step is to determine which factor level means differ significantly from other factor
level means. One way to accomplish this is by means of the Tukey method of multiple comparisons ([58],

[56], [67]) where the goal is to find confidence intervals I;;, 1 < k <! <r, such that
Priy—pr € I, 1<k <I<r]|>1-a. (28)

This can be done by considering

Iy = (Y. = Y) £d(1— a7, (n — 1)r) \ MTSE (29)

where d(1 —a;r, (n— 1)r) is the (1 — @)100 percentile of the studentized range distribution with parameters r
and (n—1)r. Values for this distribution can be found in Miller [56]. Now if a confidence interval Ij; contains
zero, then we conclude that the difference between i, and y; is not statistically significant. Otherwise, the
difference is statistically significant.

Presenting confidence intervals for every pair of factor level means may be cumbersome if there are several

factor levels. An alternative would be to find confidence intervals I;, 2 = 1,...,r such that
Pripeli=1,...,r]>1—-« (30)

This is equivalent to finding simultaneous confidence intervals about the factor level means. This can be

Ii:}_’i.:l:q(l—a;r,(n—l)r)VMTSE (31)

where ¢(1 — a7, (n—1)r) is the (1 —)100 percentile of the studentized mazimum modulus distribution with

done by considering

parameters r and (n — 1)r. Values for this distribution can also be found in Miller [56].

Rommel G. Regis is a Ph.D. candidate in Operations Research at Cornell University. He received a
Master’s degree in Mathematics at the University of Florida in 1998 and a Master’s degree in Operations
Research at Cornell in 2002. He also has an extensive background in Computer Science and Statistics.

His current research interests include numerical optimization and machine learning.

Christine Shoemaker (M ’90) is the Joseph P. Ripley Professor of Engineering at Cornell University.
She received her Ph.D. in mathematics with a specialty in dynamic programming and optimal control
theory under the supervision of Richard Bellman in Electrical Engineering at the University of Southern
California. She received a Humboldt Research Prize in 2001 and the Hinds Award from ASCE in 1999.
In addition to her research on serial and parallel optimization algorithms, she also works on optimization
applications to problems in environmental engineering, which include optimization of large systems of

partial differential equations. She teaches a Computer Science graduate course at Cornell on heuristic

optimization methods with applications in computer science and engineering.

December 3, 2002 DRAFT

